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Abstract—A number of studies of the motor system suggest that
the majority of primary motor cortical neurons represent simple
movement-related kinematic and dynamic quantities in their time-
varying activity patterns. An example of such an encoding rela-
tionship is the cosine tuning of firing rate with respect to the di-
rection of hand motion. We present a systematic development of
statistical encoding models for movement-related motor neurons
using multielectrode array recordings during a two-dimensional
(2-D) continuous pursuit-tracking task. Our approach avoids mas-
sive averaging of responses by utilizing 2-D normalized occupancy
plots, cascaded linear-nonlinear (LN) system models and a method
for describing variability in discrete random systems. We found
that the expected firing rate of most movement-related motor neu-
rons is related to the kinematic values by a linear transformation,
with a significant nonlinear distortion in about 1 3 of the neurons.
The measured variability of the neural responses is markedly non-
Poisson in many neurons and is well captured by a “normalized-
Gaussian” statistical model that is defined and introduced here.
The statistical model is seamlessly integrated into a nearly-optimal
recursive method for decoding movement from neural responses
based on a Sequential Monte Carlo filter.

Index Terms—Discrete distribution, LN model, neural decoding,
neuroprosthetics, sequential Monte-Carlo.

I. INTRODUCTION

THE study of neurons in the primary motor cortex (area MI)
and their role in the motor control system has strongly re-

lied on two complementary strategies, dictated by experimental
constraints as well as diverging views regarding what infor-
mation is represented by individual neurons. According to the
first approach [2], [3] an emphasis is placed on a mechanistic
model of the motor control system, in which the contribution of
individual neurons is aggregated and transformed to create the
motor control signal. Implicit in this approach is the view that
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the relation between the activity of individual neurons and the
motor output is rather complex, as dictated by the nonlinear,
state dependent transformation that leads from motor cortical
firing to movement. According to the second approach, the
activity of individual neurons can be viewed as representing
simple kinematic and dynamic features of the planned or exe-
cuted motor output. A prime example of this approach is the
cosine-tuning curve relating the average firing rate to the direc-
tion of movement [1]. The two views are not contradictory [4],
[5] and may actually lead to similar models of the motor system.
Rather, their main difference is in terms of the emphasis on
different functional models “movement f (activity)” versus
“activity f (movement).” The evolution of models of the
second type “activity f (movement)” in the context of the
motor system, is partly a result of experimental constraints
that limited the range and nature of movements that could
be effectively experimentally controlled or measured. These
models, which are closely related to models of sensory and
cognitive representation processes, are called encoding models.
A complete encoding model of single neurons would capture
the way in which the instantaneous firing rate is modulated by
the kinematic movement variables, as well as the variability (or
noisiness) of this firing [6]–[8]. A more general model will also
include interneuronal interactions. Decoding strategies (e.g.,
the population vector [9] or other methods [10]–[12]) as well
as mechanistic models [13] complement encoding models by
attempting to explain how the motor system pools together the
single-cell cortical activity into a movement representation.

In this paper, we develop an encoding model for individual
MI neurons using continuous simultaneous recordings of hand
position (in two dimensions) and neural activity during tracking
of a randomly moving target. In this experimental scenario, a
number of kinematic quantities that may be related to expected
firing rate (e.g., position, velocity, and acceleration) are con-
trolled so that they are well sampled within the workspace, ap-
proximately stationary over trial time, and are minimally inter-
dependent. However, the time-varying and random, nonrepeated
nature of the task makes the encoding relationship challenging
to measure, as no averaging across different trials of the same
type is possible. In order to characterize the encoding using this
dataset, we first introduce nonparametric analyses that allow us
to explore the effect of kinematic variables (two at a time) on the
expected firing rate. Having demonstrated that the two-dimen-
sional (2-D) projections of the encoding relationship are roughly
linear, we use a linear-nonlinear cascade system representation
(Wiener cascade) that effectively represents the combined ef-
fect of all the kinematic variables. Using the model for expected
firing rate we then study the associated neural variability using
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novel “neural noise” plots, comparing Poisson and an alterna-
tive, “normalized-Gaussian” distribution that we develop.

Our study of encoding in the primary motor system is mo-
tivated by an attempt to develop effective decoding algorithms
for converting spike trains recorded from multiple motor neu-
rons into the motor control signal that they represent—an es-
sential component in an implantable brain-machine interface
[14], [15]. Such algorithms may improve the applicability of
these devices, possibly overcoming the hardware constraints
in the current generation of implantable microelectrode arrays
which limit the number of practically available units to several
dozens. Optimal decoding approaches, which can be viewed as
optimal estimation solutions, ultimately rely on a statistical en-
coding model [6], like the one developed here. To demonstrate
the utility of our encoding model, we implement a recursive
Bayesian filter that is optimally tailored to it using the recently
developed method of Sequential Monte Carlo filters [16]–[18].
An earlier version of this work has previously appeared in S.
Shoham’s Ph.D. dissertation [17].

II. EXPERIMENTAL METHODS

A. Recording Setup

Two macaque monkeys (M. mulatta) were operantly con-
ditioned to perform a visually guided manual tracking task
(described below). While performing this behavior extra-
cellular signals were recorded with a chronically implanted
microelectrode array [19] (Cyberkinetics, Foxborough, MA).
The array was implanted in the arm region of the monkeys’
precentral gyrus (primary motor cortex), following a training
period lasting several months. The surgical implantation pro-
cedures are described elsewhere [20]. The array consists of
one hundred 1.0-mm-long silicon electrodes with platinized
tips (200–500 k impedances measured with a 1 kHz, 100
nA sine wave) arranged in a rectangular 10 10 grid (0.4-mm
spacing). The electrode tips were approximately located in
layers III and V. Additional details of the surgical and animal
care procedures appear elsewhere [21]. A number of long-term
studies have established the chronic recording capability of this
electrode-array [22], [23], and an ongoing research effort is
underway to establish its efficacy in an implantable brain-ma-
chine interface [14], [24]. The procedures were approved by
Brown University’s Animals Care and Use Committee.

The neural signals were bandpass filtered (250–7500 Hz, 5th
order Butterworth), amplified (5000x), digitized (30 kHz sam-
pling), and acquired on a Pentium based PC using a 100-channel
data acquisition system [25] (Bionic Technologies LLC., Salt
Lake City, UT). Thresholds were manually set, and threshold-
crossing events were saved to disk (1.6-ms duration). Multiunit
data was sorted off-line using a new automatic and noise-robust
spike-sorting algorithm [26].

In addition to the neural signals, the and position of a two-
link manipulandum were digitized by a digitizing tablet (Wacom
Technology Corp., Vancouver, WA) at 167 Hz with an accu-
racy of 0.25 mm (range: 10 10 cm) and saved to disk. These
measurements were interpolated to a 1-ms resolution using a
smoothing cubic spline (Spline Toolbox, Mathworks, Natick
MA). The smoothing spline was also used to analytically calcu-
late the derivatives, in order to avoid large discretization-related

Fig. 1. General data characteristics. Data shown from one session where
23 well-isolated units were recoded during 172 tracks that exceeded 4 s.
(a) Movement traces during three successive 8-s-long tracks. Dots represent
snapshots once every 50 ms. Tracks are marked by different shades of gray. (b)
Raster plot of unit activity during a successful track. (c) Smoothed distribution
of movement velocities during the entire recording session. (d) Smoothed
velocity histogram conditioned on spikes occurring in unit #7 (with time shift
of 125 ms). (a) Hand position traces, (b) spike rasters, (c) velocity distribution,
(d) conditional velocity distribution.

artifacts, and the smoothing parameter was chosen manually to
produce smooth derivatives with only negligible smoothing of
the position time-series.

B. Behavioral Task

The monkeys were operantly conditioned to use a low-fric-
tion manipulandum to track a target moving on a computer
screen in order to receive juice rewards. The target move-
ment was generated by low-pass filtering a pseudo-random
Gaussian-distributed sequence, yielding a time series with a
spectral cutoff set at 0.4–0.5 Hz [10-dB drop from maximal
power, see also Fig. 11(c) and (d)]. A small black cursor on the
screen indicated the manipulandum location, and the monkey’s
task was to keep it within the boundaries of the smoothly
moving red target circle (1.5-cm radius) for a duration of
8–10 s. Only trials where the monkey acquired the target within
a limited time window (1.5 s for one of the monkeys and 4 s
for the second) and did not lose it for the entire track duration
were considered successful and led to a reward. However,
we analyzed data from all trials where the tracking duration
exceeded 4 s, including unsuccessful ones.

Additional details of this experiment and additional charac-
teristics of the results are reported in [27]. Due to the experi-
mental design, the correlations between the time series of pairs
of different kinematic variables (i.e., hand position in and ,
hand velocities and accelerations) were very small

. Fig. 1 illustrates the basic features of the ex-
perimental data.

Nomenclature: In the following discussion and derivations
we will use to denote the “state” of the arm at time . In
general, the “state” of the arm can include a large number of
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kinematic or dynamic variables, however, as we only measured
the manipulandum position (in two dimensions), will refer
to the position and its derivatives (velocity, acceleration ).
The number of spikes neuron fired in the time bin that fol-
lowed time is denoted . We will denote by the instanta-
neous firing rate (also known as the stochastic intensity [28]):

in the limit . In calculating the
nonparametric encoding plots we were interested in the con-
ditional probabilities of single spikes, which led us to choose
very short time bins ms. All the subsequent analyses
are based on spike counts, and a 50-ms time bin was chosen to
allow for decoding algorithms with sufficient temporal resolu-
tion for smooth movement tracking but simple enough to allow
for a real-time implementation. A typical average firing rate for
the cortical neurons we study is Hz (generally
Hz), and more than 99% of the time bins contained 0–4 spikes.
Braces indicate an average value.

III. EXPERIMENTAL METHODS

In order to understand the general encoding relationship, a
model-free method for visualizing how the probability of firing
depends on kinematic parameters is required. Previous charac-
terizations of motor encoding (e.g., [1], [29], and [30]) relied
heavily on neural responses integrated across extended time-
windows or averaged across a large number of similar trials
to achieve continuous “tuning curves.” In the context of hip-
pocampal place cells, a simple application of Bayes’ rule was
used to describe encoding (or ‘normalized occupancy’) relation-
ships in two dimensions [31]. The basic formula

(1)

can be directly used to explore , the probability
of firing a spike given that the kinematic parameters seconds
later are . Given an experimental data trace, placing a point on
a discrete grid of the kinematic values every time the neuron
spiked provides an approximation of the density

[Fig. 1(d)]. Placing points on the same grid at every time
point (irrespective of whether the cell fired an action potential
or not) approximates the density [Fig. 1(c)]. Dividing
these histograms yields an approximate representation of the
encoding relationship .

Plots were created for the position, velocity, and acceleration
(two dimensions in each case). In making the plots we tried to
focus on regions with a sufficient amount of data, and chose
boundaries that included the 1st to 99th percentiles of the state
space in each dimension, dividing them into 50 bins. The un-
normalized plots were smoothed with a Gaussian kernel (
bins, full width at bins) and regions
where the value of the smoothed unnormalized occupancy his-
togram [Fig. 1(d)] fell below 1, were rejected. The time delay

was set at 125 ms. A previous study described the activity
of the vast majority of MI neurons as preceding movement by

Fig. 2. Velocity-conditional firing rate expressed using nonparametric plots.
Contour lines appear at regular intervals. Parallel lines indicate a planar
structure.

0–250 ms [29] (roughly uniform distribution), which led to the
selection of this number (see also [32] for a similar result). No
attempt was made to find individual-neuron delays, however, we
verified these results were fairly insensitive to small changes in

(of order 50 ms).
Nonparametric plots for the encoding of position, velocity,

and acceleration in two representative units are shown in Figs. 2
and 3. For the purpose of illustration we selected the two
units with the highest signal-to-noise ratio from one recording
session. Apart from some high-frequency distortion near the
edges, the encoding plots appear as monotonic, distorted planes
(note that contour lines for a plane are parallel and equidistant).
Comparing the dynamical range on the different plots in Fig. 3
demonstrates that unit 1 (left panels) encodes velocity strongly
(firing rate modulated between 10–35 Hz, a range twice as wide
as for other variables), whereas unit 2 (right panels) encodes
primarily position (firing rate modulated between 7–20 Hz, a
range twice as wide as for other variables). However, in neither
case is the encoding exclusively for velocity or position. The
plots appear planar with respect to the velocity in unit 1 and
position in unit 2 (see [27] for a quantitative analysis of the
linearity in the nonparametric plots).

These results point to one of the weaknesses of this technique,
when the combined contribution to the firing rate of all of the
different kinematic variables needs to be evaluated. If the rela-
tionships were perfectly linear, we would expect the combined
contribution to have this form

(2)

However, how to pool together the encoding functions from
several nonlinear 2-D plots is not as straightforward. More-
over, relying on a single time delay may distort the plots,
particularly in the acceleration plots (acceleration being the
most rapidly changing signal) [33]. In order to account for
nonlinearities in the encoding of multiple parameters, as well
as effects occurring at multiple temporal delays, we turn from
the fully nonparametric models introduced in this section to a
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Fig. 3. Nonparametric encoding plots of different kinematic variables. The
color scale is in spikes/s units. The left and right panels are for different units
[left is the same unit as in Figs. 1(d) and 2]. (a) Position encoding. (b) Velocity
encoding. (c) Acceleration encoding. Equidistant contour lines are super-posed.
(d) nonparametric encoding plots calculated without any smoothing (compare
left panel with b-left and right panel with a-right). Lines indicate a planar
structure.

nonlinear generalization of the general linear encoding model
[which generalizes (2)].

IV. LN ENCODING MODELS

Models comprised of a cascade of a linear filter fol-
lowed by a general static nonlinearity , also known as LN-
or Wiener-cascade models, have been explored by a number of
studies (e.g., [34]–[36]), and form a natural extension to linear
system models. These models appear well suited for describing
the properties of neurons in the early visual system. In the case
of the motor system, since firing tends to precede movement,
encoding relationships are usually anti-causal, and can take the
form

(3)

In order to obtain and from our data, we used a
simple two-step method similar to the one described in [36].
In the first step standard linear regression of the position (x and
y) time series versus the neural response time series
is used to determine (the regression coefficients). Given

it is straightforward to obtain a linear prediction time

Fig. 4. Illustration of binning method used for estimating LN models from
discrete neural data (simulated data). Top: The linear expectation time series
û is broken into bins according to the linear prediction value (2 shaded bins
illustrated). Center: The spike counts time series is segmented accordingly (solid
and dashed arrows point to time points corresponding to the two bins). Bottom:
f is evaluated from the relationship between linear prediction and mean firing
rate in the corresponding time points. The dashed and solid arrows are pointing
at two points that correspond to each of the two bins.

series using a convolution operation,
and can now be used as a basis for evaluating the nonlin-
earity . This is done using a simple binning approach: the
time axis is broken into subsets where falls into different bins

. This nonparametric aggrega-
tion of ‘related’ time bins from different parts of the time axis
is illustrated in the upper two panels of Fig. 4. The relation-
ship of and the mean number of spikes in the corre-
sponding subset of time bins approximately corresponds to the
nonlinearity , as is illustrated in the bottom panel of Fig. 4

. To obtain a parametric model of the data
we fit the empirical relationship with a polynomial. The fitting
procedure outlined will provide an accurate description of the
encoding relationship when: 1) has an elliptically symmetric
distribution [36], and 2) the neural response has a one-dimen-
sional dependence on . Both conditions are satisfied to a good
approximation in our data [37]. Determination of an LN system
model for unit 1 is illustrated in Fig. 5. The length l of the linear
kernel is not known a priori, nor is the optimal polyno-
mial order. Both parameters affect the model complexity, and
an optimal choice has to provide a good fit to the data without
being overly complex. Penalizing the data loglikelihood using
Schwarz’s Bayesian Information Criterion (BIC) [38] provides
a systematic approach to model selection

#
# (4)
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Fig. 5. Results of LN model fitting with neural data. Results are for same
unit as in Figs. 1–3. (a) Penalized loglikelihood determination of kernel length.
(b) Penalized loglikelihood determination of polynomial order. (c) Static
nonlinearity f , and 4th order polynomial fit. (d) Performance of LN model in
predicting the firing rate (concatenation of several trials). The spike counts and
prediction were smoothed with a hamming window of width 1 s.

where we calculate using the statistical models in-
troduced later. An optimal choice is one where the penalized
likelihood is maximal: in Fig. 5(a) (for each of the
and dimensions). This implies that the encoding relationship
for this unit is predominantly a function of position, velocity,
acceleration, and jerk. The inferred nonlinearity for this unit
[Fig. 5(b)] is a polynomial of order 4 (note that the penalized
loglikelihood is nearly flat in the range 2–4). The model is able
to describe expected rate modulations in the range 12–45 Hz
[Fig. 5(c)]. The collection of units in this study had modulations
in the range 0–60 Hz (equivalent to a maximal expectation of 3
spikes/bin). Directly scrutinizing the nonlinearity reveals that it
can be mostly described by a piecewise-linear combination of
two parts. The power of the inferred LN model in predicting
the time-varying firing rate of one such cell can be qualita-
tively demonstrated by comparing low-pass filtered versions of
the prediction to a smoothed version of the binned spike counts
[Fig. 5(d)]. The prediction is clearly able to track some of the
significant excursions of the firing rate, but generally does not
span its full dynamical range (since not all the factors that mod-
ulate firing are captured by our measurements and model). The
correlation coefficient between the two time series was 0.64;
40% of the units recorded in this study had a correlation coeffi-
cient larger than 0.5 (maximal cc: 0.78, mean: 0.4).

Determination of the optimal polynomial orders allows
us to break the neural units into three categories: nonlinear

, linear and unrespon-
sive . Representative units in these categories
are presented in Fig. 6. The unresponsive units generally had
low average firing rates (0–15 Hz). In the two monkeys from
which we recorded (one dataset analyzed from each monkey),
unresponsive units accounted for 17% and 7%, respectively

Fig. 6. Calculated static nonlinearity in six representative units. The Expected
rate has units of spikes/s. A 3rd order polynomial fit line is also shown for
each unit. (a)–(c) Nonlinear functions. (d), (e) Linear encoding functions. (f)
Unresponsive unit—no significant encoding of kinematic variables.

( and ), linear units accounted for 52% and 59%, re-
spectively ( and ), with nonlinear units accounting
for the rest % and 34%, respectively.

The optimal linear kernel length for the different units in our
data fell in the range 1–6, implying that the encoding we observe
is typically a mixture of various kinematic variables. Therefore,
the encoding relationship must be viewed as more general than
the cosine tuning curve [1], or the model proposed more re-
cently by Moran and Schwartz [29] in which the firing rate is
seen to be a function exclusively of the direction of motion and
its speed. Instead, it is more consistent with the complex depen-
dence on multiple movement parameters revealed by multiple
regression analysis [32], [39]. To further illustrate this point, we
note that a subset of the cells we analyzed actually coded for po-
sition more strongly than for velocity (e.g., unit 2 in Fig. 3) and
that for such units the predictive power of our new model was
much stronger than that of the velocity tuned models (Fig. 7).
Correctly accounting for these units is of particular importance
when attempting to decode arm position.

V. NEURAL NOISE PLOTS

Modeling the “expected firing rate” does not
provide a complete description of the neural firing process and
describing the variability of the neuron firing is also necessary in
our framework for likelihood calculations. A favored approach
to this problem is to assume an inhomogeneous Poisson model
with rate [6], [31]. This provides a relatively simple statistical
model, however, in some neural systems the Poisson model is
clearly inappropriate (e.g., [40]), and a previous study has indi-
cated a significantly smaller-than-Poisson variability in MI unit
activity [12]. While some of the units we recorded here had
Poisson firing statistics, a significant proportion did not. The
variance versus mean behavior of two representative units is il-
lustrated in Fig. 8(a), and it can be seen that while unit 1 is rea-
sonably well described as Poisson, unit 2 is clearly not.

One principled way of characterizing non-Poisson statistics
in spike trains is the method of time rescaling [7], [8], where
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Fig. 7. Failure of velocity based models to predict firing rate in a strongly
position encoding unit. The plot compares the low-pass filtered firing of a neural
unit with the filtered predictions of three models (several trials concatenated).
The cosine tuning model predicts the firing rate solely as a function of the
direction of motion, while the Moran model uses velocity and speed as input.
Parameters for both models were obtained using a maximum-likelihood
procedure. The LN model kernel had a length of 2 (in both x and y) and,
therefore, represents a function of position and velocity. A hamming window
of 1.5 s was used to filter the time traces. The correlation coefficients when
comparing the real and predicted traces are 0.32, 0.28, and 0.79, respectively.

the expected firing rate is used to rescale the time axis, and
subsequently can lead to a non-Poisson, history dependent sta-
tistical model of the firing. However, as this work is focused
on using spike counts in intermediate-size bins (50 ms), an al-
ternative method was developed for describing the statistics of
the discrete random spike-counts as a function of the expected
firing rate. The method [see Fig. 8(b)] is conceptually similar to
the adaptive binning method used above to calculate the non-
linearity in the LN cascade model. Here, the expected firing
rate time-series (3) is calculated, and used to segment the
set of time bins into subsets where falls into different bins

. For each subset we find
the probabilities for the different values of the number of spikes

and plot , etc. versus the expected value
. The neural noise plot in Fig. 8(c) illustrates that the Poisson

model adequately describes the empirical count distributions for
unit 1

(5)

In contrast, unit 2 does not fit the Poisson model [Fig. 8(d)]. The
discrepancy primarily manifests as “clustering”: higher than ex-
pected probability for 1 and 2 spikes, while the probability of 0
and 3 spikes is lower than expected. This clustering leads to the
smaller-than-Poisson conditional variance in Fig. 8(a).

VI. THE NORMALIZED-GAUSSIAN DISCRETE DISTRIBUTION

The Poisson model fails to describe the empirical spiking sta-
tistics in a large proportion of the units we recorded. Several
studies (e.g., [7]) replaced the Poisson model using nonexpo-
nential models for the inter-spike interval such as the gamma
distribution. However, processes with such ISI distributions lead
to nonanalytical forms for the distributions of discrete spike

Fig. 8. Statistical properties and noise analysis of motor unit data. (a) Spike
count variance versus mean in two representative units. Each point corresponds
to one percentile of the time bins, broken according to the prediction of the LN
model. (b) Constructing a neural noise plot(simulation data). (top panel) The
LN-expected firing rate time series is binned—two bins are illustrated. (center
panel) The spike counts time series is segmented accordingly. The proportion of
bins having specific number of spikes (0; 1; 2 . . .) is evaluated. (bottom panel)
The neural noise plot illustrates the conditional probabilities of the different
discrete outcomes. Each of the bins contributed one point to each of the discrete
probability curves. The lines correspond to a Poisson distribution. (c) Neural
noise distribution for Unit 1, compared with a Poisson model. (d) Comparison
with Poisson model for Unit 2. (e) Comparison with the Normalized Gaussian
model for Unit 2.

counts, and we were unable to find a major discrete distribution
[41] that was able to capture the statistics of our empirical distri-
butions. Motivated by the observed decoupling of the variance
and the mean [e.g., Fig. 8(a)] as well as the shape of the em-
pirical distributions we observed in the neural noise
plots [Fig. 8(c)], we set to adapt the normal distribution

(6)

to the case where takes only discrete positive values. One
way to do this is to treat the parameter in (6) as a free pa-
rameter, chosen to normalize the probabilities. However, the re-
sulting distribution will no longer have a mean , which will
limit its usefulness. Instead, we look for a form that satisfies si-
multaneously the following two constraints:

(7)

(8)
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Fig. 9. The Poisson and Normalized Gaussian discrete distributions. The
Normalized Gaussian distribution shown here (solid lines) has a parameter
� = 0:71. The Normalized Gaussian distribution behaves like a Gaussian with
standard deviation � at large values of �. For small values of � it approaches
the Poisson distribution (symbols) near � = 0 (binomial range). The inset
compares the behavior of the variance as a function of the mean for the two
distributions.

Both constraints cannot in general be satisfied using a single
free parameter. A different normalization that is able to simulta-
neously satisfy these constraints (using two auxiliary variables:

and ) has the following form:

...

(9)

The normalizing auxiliary variables: (zero probability)
and (the rest), can be numerically evaluated from the two
constraint [(7) and (8)] for a given value of and the param-
eters and . The simplest way to evaluate these variables
is first to evaluate from (8), and then substitute it in (7)
to obtain . We call the resulting distribution the Normal-
ized-Gaussian discrete distribution. Fig. 9 illustrates the Nor-
malized-Gaussian probability of different values of over a
range of different ’s, and compares it with the Poisson distri-
bution in the same range. We note that the Normalized-Gaussian
distribution behaves like a Gaussian distribution at large values
of and (for small values of ) approaches a Poisson distri-
bution near . The plot insert demonstrates that while in
a Poisson-distributed random variable the variance is equal to
the mean, a Normalized-Gaussian variable has the property of
saturating variance, and for large means the variance is essen-
tially independent of the mean. Adjusting the value of the dis-
persion parameter results in a different width of the individual
bell curves (not shown). In our application is fit numerically
by minimizing the sum-squared distortion between the observed
and calculated distribution in the neural noise plots.

The satisfactory fit that the Normalized-Gaussian distribu-
tion provides to our data is illustrated in Fig. 8(e), which shows
neural noise plots for a unit for which the Poisson model fails.
In fact, we found that the new noise model works well for units
with all three types of behaviors we noted in the previous section

Fig. 10. Variance versus expected firing for all recorded units. Each point
represents the variance versus the highest expected firing rate (in spikes/bin)
for each unit. The N. Gaussian lines (dashed) are for � = 0:6 (lower line) and
� = 1:15. The solid line is for the Poisson distribution (variance = mean).

(and Fig. 6). Fig. 10 presents a composite view of the variance
versus mean behavior of all the 50 units we studied here. About
one half of the units lie significantly below the identity line, and
were well fit by N. Gaussian models with (the
N. Gaussian lines in Fig. 10 show the bounds of this parameter
range). The N. Gaussian distribution converges at low and low
firing rate to the binomial distribution and, therefore, also cap-
tures the behavior of the large proportion of units that had low
firing rates. In only 8 of the 44 responsive units (all in monkey
2) the Poisson model had a higher penalized likelihood (4) rel-
ative to the N. Gaussian model.

Note: our goal in using the statistical models above is to be
able to calculate the likelihood of particular experimental out-
comes. A few difficulties arise infrequently in this application:
the inherent model error in the statistical model may lead to
over-weighing outcomes with a very low likelihood, the ex-
pected firing rate (calculated from the LN model) may become
negative and the constraints in (7) and (8) lead to small nega-
tive values of for certain values of and . To address all
of these issues we truncate the likelihood from below at a small
value ( was chosen here).

VII. MODEL-BASED DECODING

Taken together, (3) and (9) define the likelihood of obtaining a
certain number of spikes per bin in neuron . To simplify further
calculations, we assume conditional independence between the
simultaneous output of n neurons (see, e.g., [12] and [42]–[44]
for different perspectives on the issue of dependencies in motor
cortical coding). The independence assumption leads to the fol-
lowing likelihood of the combined firing

(10)

A full statistical characterization of our experimental system
also requires a model for the dynamics of the arm. As in sim-
ilar applications in the applied estimation literature [45], [46]
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Fig. 11. Performance of auto regressive models of a monkey’s hand
movement. (a) Experimentally obtained traces of the monkey’s hand movement
(x and y coordinates). (b) Time series generated by 4th order autoregressive
process fit to data from (a). (c) power spectra for data in (a) and (b), as well as
best AR model (9th order). (d) Blow up of (c) for low frequencies. (a) Hand
position trace, (b) simulated AR(4) trace, (c) power spectra, (d) power spectra
(zoom).

we choose the multivariate autoregressive (AR) model, a simple
model which describes a large range of realistic motion traces
and leads to tractable estimation procedures

(11)

where w is a vector of independent, unit variance random dis-
turbances (Gaussian distributed), and G are matrices
(estimated using the ARFIT package for fitting multivariate AR
models [47]), and contains the x and y position at time t.
The full time trace was obtained by pasting detrended move-
ment traces (to minimize discontinuities). The results of fitting
an auto regressive model to one of our data traces are illustrated
in Fig. 11 (Note the good approximation provided by an order
4 model ).

With the encoding and movement models characterized it
is now possible to define an algorithm for decoding the arm’s
movement from the neural responses in a nearly optimal fashion
which is tailored to the encoding statistics. Recently, algorithms
for recursive Bayesian estimation based on sequential Monte
Carlo methods [16] have gained popularity for applications in-
volving nonlinear non-Gaussian observation models (i.e., en-
coding models), as is our case. The implementation proceeds by
recursive application of two computational procedures at every
time step, leading from a conditional probability distribution at
time , through an intermediate distribution, to a new con-
ditional probability distribution at time

(12)

Fig. 12. Performance of a Sequential Monte Carlo filter using 17
simultaneously recorded motor cortical units. The units were selected
from the 27 isolated in monkey 2. (a) Estimation performance during 10
successful trials in the x (upper panel) and y (lower panel) dimensions. Trials
were stitched together at the locations indicated by the vertical lines. (b)
Histogram of correlation coefficients for all 41 trials recorded.

As in all Monte Carlo methods, the conditional probability
distributions are approximately represented by a set of repre-
sentative random samples (or particles), and the computations
involve simple operations such as particle movement [using the
movement model (11)] and resampling [using the likelihood
model (10)]. A detailed account of particle filter implementa-
tions is available elsewhere [16]–[18]. Each sample in our im-
plementation is a vector with eight elements (eight-dimensional
state space), corresponding to the positions and in 4 different
time delays. Thus, the filter essentially uses the firing up to time

to predict the hand position at time . We implemented
the filter using 3000 particles, and our results for position de-
coding using the 17 best units (selected from the 27 recorded
in monkey 2) are illustrated in Fig. 12. In over of the trials
the model-based trajectory estimate had a correlation coefficient
larger than 0.8 when compared to the actual position trajectory.
The correlation coefficients mean value was . In contrast,
trajectories computed using a vector-based optimal linear esti-
mator (OLE) [10] (with a single time bin set at zero delay, as
in [18]) had an average correlation coefficient of 0.25 with the
actual trajectory (not shown).

VIII. DISCUSSION

Our developmentof statistical encoding models for the activity
of MI neurons has introduced a few useful new tools and pro-
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vided some insight into properties of motor encoding. We began
by characterizing the encoding of kinematics by MI neuron firing
rates. The majority of the neurons we have studied here had firing
rates thatwere linearly related to thekinematicvariables.This lin-
earity is not surprising, as it is consistent with the classical cosine
shaped tuning curve (with respect to the direction of movement),
and was thus anticipated by theoretical studies [5], [48]. How-
ever, a possibility that cannot be discounted based on our data is
that thelinearityresults fromanunderlyingnonlinearrelationship
that is artificially linearized by being experimentally sampled in a
narrow range of positions, velocities, and accelerations. Since we
are probably underestimating the full-range nonlinearity, it is in-
teresting tonote thatoverone thirdof the responsiveunitswehave
studied exhibited significant nonlinearity, and that most of the
highly informative neurons were nonlinear. Nonlinear motor en-
coding may reflect pervasive nonlinearities throughout the motor
control system (which models typically linearize [3]), and a spe-
cific multiplicative form of motor encoding nonlinearity has re-
centlybeensuggestedbasedonpsychophysicaldata [49].Experi-
mental methods that enable tracking the arm position over a wide
range of motions are now available (e.g., the Shape Tape, Mea-
surand Inc., Fredricton, NB, Canada), and this study illustrates
the importance of performing such experiments in order to obtain
a more complete picture of motor encoding processes.

This analysis also shows that motor cortical units encode
complex functions of the arm position and its derivatives, which
does not lend support to the view that motor cortex neurons
encode only simplified global features of movement (like the
direction of movement). To emphasize this point, we have
provided a direct illustration of the extremely weak predictive
power of velocity-based encoding models in a representative
unit, and contrasted it with the more complete characterization
provided using the LN cascade models (Fig. 7). We note that
the cascade approach can also be extended to the study of
neuronal interactions [44].

We found that the variability around the expected firing rate
is markedly sub-Poisson in many of the movement-related units
we recorded, and those units may exhibit a nearly constant vari-
ance across a wide dynamic range. In contrast with other studies
that have looked at variability of motor responses (e.g., [12]),
we have attempted to use our encoding model to account for
some of the variability that is a result of the movement-related
modulations in firing rate. The remaining variability, which we
capture using the Normalized-Gaussian noise model, is due
in part to using an imperfect model, in part to the imperfect
observation of motion (only movement in 2-D was measured in
our experiments), and in part to the inherent statistics of neu-
ronal firing. Our use of a predictive model in conjunction with
the neural noise plot introduced here allowed us to faithfully
represent signal-dependent distributions that are necessary for
model-based decoding; however, we are unable to distinguish
between the different sources of variance with the existing
dataset. This difficulty notwithstanding, it is extremely likely
that after ‘explaining’ additional variance the intrinsic neural
statistical properties will have very little variance—markedly
sub-Poisson. The nonpoisson nature of the variability has a
number of implications. Square-root transforming of binned
counts (e.g., [29] and [50]) is a variance stabilizing transfor-
mation suitable for Poisson processes where the noise variance

depends on the signal, and is ill-suited for the analysis of
data with the properties we have described. Interestingly,
the signal-dependent noise observed in the peripheral motor
system, which may explain a number of phenomenological
scaling laws observed in motor control [51] does not depend
on signal dependent noise in MI, but rather on the organization
and properties of the peripheral motor-unit pool [52].

In order to address the observed statistical properties of neural
firing we developed the Normalized Gaussian distribution, a
new discrete probability distribution. We anticipate that the new
distribution will find many additional applications in studies of
neural systems, particularly cortical systems. While we have
used it in conjunction with a predictive model, in other types
of experiments the peri-stimulus time histogram (PSTH) of re-
sponses to highly reproducible experimental conditions could
provide an approximate firing rate model. This probability dis-
tribution is easy to compute, provides a signal independent vari-
ance at high spike counts and smoothly transitions to a binomial-
like behavior at low spike counts. It is also flexible enough to fit
different data with a range of non-Poisson variability character-
istics. The statistics of responses in extended time-windows in
the visual cortex [53] are well fit by a truncated Gaussian, sim-
ilar to the statistics observed in the primary motor cortex [12],
strengthening our belief in the general applicability of the Nor-
malized-Gaussian distribution.

Finally, we have demonstrated that the encoding model pre-
sented can be integrated with recursive likelihood-based esti-
mation procedures to yield practical filters for a brain-machine
interface. The filter we implemented yielded a very large per-
formance gain versus the optimal linear vector-based method
(which out-performs the population vector [10]). This result was
partially due to the recursive filter’s ability to use the temporal
smoothness of the motion trajectory while the OLE is an in-
stantaneous estimator. Other filtering methods available for this
application include finite-impulse response linear filters [27],
[54]–[56], recursive Kalman filtering [see [57]] and neural net-
work based filters [56] (note that [27] and [57] tested their re-
sults using the same experimental data that we used here). Based
on fundamental results in estimation theory, the optimal filter
for a linear encoding model, with an additive Gaussian noise
process is a linear one. This appears not very far from the sit-
uation we have described here for motor cortical units. Never-
theless, we expect that the model-based approach used here will
offer future advantages in this brain-machine interface applica-
tion. First, the models used are compact and the small number of
parameters makes for good generalization. Second, they provide
clear measures for which units are “good encoders,” providing
for improved generalization performance. Third, our filter is re-
cursive and so can deal well with short decoding epochs. Fourth,
it can easily deal with recording nonstationarity (unit adaptation
and loss). And finally, it is quite likely that most neurons used
in actual brain-machine interfaces will exhibit rich nonlineari-
ties in their activity patterns, which will also be well-captured
by our approach.
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